top of page
頂端
實驗室研究方向

實驗室旨在開發可攜式的病原體基因即時檢測裝置,以應對傳染性病毒和細菌等微生物的檢測需求。核心技術涵蓋了多個領域,包括熱控技術、電路設計、精密加工、感測技術和生物樣本處理以及影像分析等。

The laboratory aims to develop portable point-of-care pathogen DNA detection devices to meet the detection needs of microorganisms such as infectious viruses and bacteria. Core technologies cover multiple fields, including thermal control technology, circuit design, precision processing, sensing technology, biological sample processing, and image analysis.

 

 

熱控技術方面,我們開發高效的熱控制系統,確保DNA樣本複製過程中的溫度穩定性和精確性,進而確保檢測結果的準確性和可靠性。

在電路設計方面,我們設計精密的電路以支援裝置的各項功能,同時保證其在各種條件下的穩定運行。

 

精密加工方面用於製造裝置的各個部件,確保其具有高度的精度和可靠性。

感測技術的發展使裝置能夠快速、靈敏地檢測微生物的存在,並將檢測結果準確地記錄下來。

 

生物樣本處理和影像分析方面,我們開發高效的生物樣本處理技術,以確保樣本的純化和準備過程能夠達到檢測所需的標準。同時,我們將利用影像分析技術來解讀檢測結果,並將其轉換為可供用戶理解的形式。

 

In terms of thermal control technology, we develop efficient thermal control systems to ensure temperature stability during sample processing, ensuring the accuracy and reliability of test results.

 

Regarding circuit design, we design sophisticated circuits to support various device functions while ensuring stable operation under different conditions.

 

Precision machining is used to manufacture various device components, ensuring high accuracy and reliability.

The development of sensing technology enables devices to quickly and sensitively detect the presence of microorganisms and accurately record the detection results.

 

Regarding biological sample processing and image analysis, we develop efficient biological sample processing technology to ensure that the sample preparation process meets the detection standards. At the same time, we use image analysis technology to interpret the test results and convert them into a form that users can understand.

 

 

我們期望能夠使得對傳染性病毒和細菌等微生物的檢測變得更加便捷和有效,可攜式裝置能夠在任何場域進行檢測,並通過物聯網技術將檢測結果傳輸至雲端資料庫進行進一步的分析,從而提供給相關學術界和機構更多有價值的信息。

 

We aim to make the detection of microorganisms, such as infectious viruses and bacteria, more convenient and practical. The device can detect in any field and transmit the detection results to the cloud database for further analysis through IoT technology, thereby providing more valuable information to relevant academic circles and institutions.

實驗室設備

實驗室設備
Instruments

​可攜式檢測裝置

LAMP V01.jpg

創想CR-10S 300

DSC_0558.JPG

微型CNC

DSC_0555.JPG

​鋸床

DSC_0557.JPG

元力智庫

INFINITY3DP Infinity X1E

IMG_20211122_115817.jpg
CFPCR V01.jpg

雷射切割機

DSC_0556.JPG

鑽床

DSC_0554.JPG

CRACK

CR-01熱電偶焊線機

IMG_20220509_133135.jpg

​發表著作
Publications

發表著作

(2024)

Sheu, S. C., Kijamnajsuk, P., Chan, C. K., & Chen, J. J.* A 3D-printed oscillatory polymerase chain reaction system using a single heater. Applied Thermal Engineering, 239, 122201. (SCI IF=6.465, Cited number=0, Energy - Energy Engineering and Power Technology Q1) (MOST NSTC 112-2637-B-020-004-)

 

(2024)

Thairat, C., Kijamnajsuk, P., Chotikaprakhan, S., Kuleung, C., & Chen, J. J. Development of real-time fluorescence CRISPRCas12a-based detection as a portable diagnostic system using integrated circuits. Applied Science and Engineering Progress, 11(1), 1-13. (Scopus)

 

(2022)

Sheu, S. C., Song, Y. S., & Chen, J. J.* A portable continuous-flow polymerase chain reaction chip device integrated with arduino boards for detecting colla corii asini. Micromachines, 13(8), 1289. (SCI IF=3.523, Cited number=2, Engineering - Electrical and Electronic Engineering Q2) (MOST 110-2313-B-020-003-)

(2022)

Chen, J. J.*, & Lin, Z. H. Fabrication of an oscillating thermocycler to analyze the canine distemper virus by utilizing reverse transcription polymerase chain reaction. Micromachines, 13(4), 600. (SCI IF=3.523, Cited number=5, Engineering - Electrical and Electronic Engineering Q2) (MOST 109-2313-B-020-008-)

(2021)

Sheu, S, C., Huang, C, Y., & Chen, J. J.* Portable molecular diagnostics device for identification of Asini Corii Colla by loop-mediated isothermal amplification. Inventions, 6(3), 51.(MOST 109-2313-B-020-008-)

(2020)

Huang, H. J., Chiang, Y. C., Hsu, C. H., Chen, J. J., Shiao, M. H., Yeh, C. C., Huang, S. L., & Lin, Y. S.* Light energy conversion surface with gold dendritic nanoforests/Si chip for plasmonic polymerase chain reaction. Sensors, 20(5), 1293. (SCI Impact Factor=3.275, INSTRUMENTS & INSTRUMENTATION Q1)

(2019)

Ma, S. Y., Chiang, Y. C., Hsu, C. H., Chen, J. J., Hsu, C. C., Chao, A. C., & Lin, Y. S.* Peanut detection using droplet microfluidic polymerase chain reaction device. Journal of Sensors, 2019. (SCI Impact Factor=1.595, Cited number=0/0 (0), INSTRUMENTS & INSTRUMENTATION Q3)

(2018)

Chen, J. J.*, & Li, K. Analysis of PCR kinetics inside a microfluidic DNA amplification system. Micromachines, 9(2), 48. (SCI Impact Factor=2.523, Cited number=0/0 (0), NANOSCIENCE & NANOTECHNOLOGY Q3, INSTRUMENTS & INSTRUMENTATION Q2)(MOST 106-2313-B-020-006-MY2)

(2016)

Chen, J. J.*, & Hsieh, I. H. Using an IR lamp to perform DNA amplifications on an oscillatory thermocycler. Applied Thermal Engineering, 106, 1-12. (SCI Impact Factor=4.725, Cited number=0/0 (0), THERMODYNAMICS Q1, ENERGY & FUELS Q2, ENGINEERING, MECHANICAL Q1, MECHANICS Q1)(MOST 104-2313-B-020-001-)

Chen, J. J.*, Chen, W. H., & Liu, H. J. Oscillatory-type DNA amplification system with 8051 based temperature controller. Journal of Mechanical Engineering and Automation, 6(2), 25-29. (MOST 104-2313-B-020-001-, MOST 104-2627-B-020-001-)

Chen, J. J.*, Sheu, T. S., & Wang, Y. J. Continuous-flow DNA amplification device employing microheaters. In Defect and Diffusion Forum (Vol. 366, pp. 17-30). Trans Tech Publications. (EI, JA, Cited number=0/0 (1))(MOST 104-2313-B-020-001-)

(2015)

Chen, J. J.*, Liao, M. H., Li, K. T., & Shen, C. M. One-heater flow-through polymerase chain reaction device by heat pipes cooling. Biomicrofluidics, 9(1), 014107. (SCI Impact Factor=2.5, Cited number=0/0 (9), BIOCHEMICAL RESEARCH METHODS Q3, BIOPHYSICS Q3, NANOSCIENCE & NANOTECHNOLOGY Q3, PHYSICS, FLUIDS & PLASMAS Q2)(MOST 103-2313-B-020-006-)

(2014)

Chen, J. J.*, Li, K., Chen, W., & Yang, Y. Analysis of thermal performance in a bidirectional thermocycler by including thermal contact characteristics. Micromachines, 5(4), 1445-1468. (SCI Impact Factor=2.523, Cited number=0/0 (0), NANOSCIENCE & NANOTECHNOLOGY Q3, INSTRUMENTS & INSTRUMENTATION Q2)(MOST 103-2313-B-020-006-)

Chen, J. J.*, Yang, F. H., & Liao, M. H. PTFE capillary-based DNA amplification within an oscillatory thermal cycling device. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 8(7), 1181-1185. (NSC 102-2313-B-020-011-)

Chen, J. J.*, Liao, S., Liu, M., Lin, J., Sheu, T., & Miao, M. Surface tension flows inside surfactant-added poly (dimethylsiloxane) microstructures with velocity-dependent contact angles. Micromachines, 5(2), 116-138. (SCI Impact Factor=2.523, Cited number=0/0 (0), NANOSCIENCE & NANOTECHNOLOGY Q3, INSTRUMENTS & INSTRUMENTATION Q2)(NSC 102-2313-B-020-011-)

(2013)

Chen, S. J., & Chen, J. J.* Design and microfabrication of a high throughput thermal cycling platform with various annealing temperatures. In Proceedings of World Academy of Science, Engineering and Technology (No. 75, p. 434). World Academy of Science, Engineering and Technology (WASET). (NSC 101-2313-B-020-023-)

Chen, J. J.*, Shen, C. M., & Ko, Y. W. Analytical study of a microfludic DNA amplification chip using water cooling effect. Biomedical Microdevices, 15(2), 261-278. (SCI Impact Factor=2.176, Cited number=2/6 (16/22), ENGINEERING, BIOMEDICAL Q3, NANOSCIENCE & NANOTECHNOLOGY Q3)(NSC 100-2221-E-020-024-)

Chen, J. J.*, Chen, W. H., & Shie, Y. S. The effect of thermal contact resistance on heat management in a shuttling PCR system. In Applied Mechanics and Materials (Vol. 284, pp. 1941-1945). Trans Tech Publications. (EI, CA)(Cited number=0/0 (1))(NSC 100-2221-E-020-024-)

(2012)

Sheu, T. S., Chen, S. J., & Chen, J. J.* Mixing of a split and recombine micromixer with tapered curved microchannels. Chemical Engineering Science, 71, 321-332. (SCI Impact Factor=4.311, Cited number=44, ENGINEERING, CHEMICAL Q1)(NSC 100-2221-E-020-024-)

Chen, J. J.*, & Shie, Y. S. Interfacial configurations and mixing performances of fluids in staggered curved-channel micromixers. Microsystem technologies, 18(11), 1823-1833. (SCI Impact Factor=1.737, Cited number=0/2 (10), ENGINEERING, ELECTRICAL & ELECTRONIC Q3, NANOSCIENCE & NANOTECHNOLOGY Q4, MATERIALS SCIENCE, MULTIDISCIPLINARY Q3, PHYSICS, APPLIED Q3)(NSC 100-2221-E-020-024-)

(2011)

Chen, J. J.*, & Yang, Y. T. Modeling and experiment of shuttling speed effects on the OSTRYCH. Applied Thermal Engineering, 31(14-15), 2797-2807. (SCI Impact Factor=4.725, Cited number=0/0 (0), THERMODYNAMICS Q1, ENERGY & FUELS Q2, ENGINEERING, MECHANICAL Q1, MECHANICS Q1)(NSC 99-2313-B-020-009)

Chen, J. J.*, Chen, C. H., & Shie, S. R. Optimal designs of staggered Dean vortex micromixers. International Journal of Molecular Sciences, 12(6), 3500-3524. (SCI Impact Factor=4.556, Cited number=2/5 (7/10), BIOCHEMISTRY & MOLECULAR BIOLOGY Q1, CHEMISTRY, MULTIDISCIPLINARY Q2)(NSC 99-2313-B-020-009)

Chen, J. J.*, & Chen, C. H. Investigation of swirling flows in mixing chambers. Modelling and Simulation in Engineering, 2011, 10. (Scopus)(Cited number=0/0 (3))(NSC 96-2221-E-020-021-)

Chen, J. J.*, Lai, Y. R., Tsai, R. T., Der Lin, J., & Wu, C. Y. Crosswise ridge micromixers with split and recombination helical flows. Chemical Engineering Science, 66(10), 2164-2176. (SCI Impact Factor=4.311, Cited number=28, ENGINEERING, CHEMICAL Q1)(NSC 96-2221-E-020-021-)

(2009)

Hsieh, T. Y., & Chen, J. J.* Simulation and design of the geometric characteristics of the oscillatory thermal cycler. Engineering Technology, 29, 295-303. (Cited number=0/0 (3))(NSC 97-2221-E-020-034-)

Lu, C. S., Chen, J. J.*, Liau, J. H., & Hsieh, T. Y. Flow and concentration analysis inside a microchannel with lightning grooves at two floors. Journal of Biomechatronics Engineering, 2(1), 13-32. (Cited number=0/0 (1))(NSC 97-2221-E-020-034-)

(2006)

Chen, J. J.*, Liu, W. Z., Lin, J. D., & Wu, J. W. Analysis of filling of an oval disk-shaped chamber with microfluidic flows. Sensors and Actuators A: Physical, 132(2), 597-606. (SCI Impact Factor=2.904, Cited number=1/4 (10), ENGINEERING, ELECTRICAL & ELECTRONIC Q2, INSTRUMENTS & INSTRUMENTATION Q2)

(2004)

Chen, J. J.*, & Lin, J. D. A theoretical model for the nongray radiation drying of polyvinylalcohol/water solutions. Drying Technology, 22(4), 853-875. (SCI Impact Factor=2.988, Cited number=0/2 (2), ENGINEERING, CHEMICAL Q2, ENGINEERING, MECHANICAL Q2)

(2000)

Chen, J. J., & Lin, J. D.* Thermocapillary effect on drying of a polymer solution under non-uniform radiant heating. International Journal of Heat and Mass Transfer, 43(12), 2155-2175. (SCI Impact Factor=4.947, Cited number=0/12 (21), THERMODYNAMICS Q1, ENGINEERING, MECHANICAL Q1, MECHANICS Q1)

(1999)

Chen, J. J., Lin, J. D.*, & Sheu, L. J. Simultaneous measurement of spectral optical properties and thickness of an absorbing thin film on a substrate. Thin Solid Films, 354(1-2), 176-186. (SCI Impact Factor=2.03, Cited number=1/9 (20), MATERIALS SCIENCE, MULTIDISCIPLINARY Q3, MATERIALS SCIENCE, COATINGS & FILMS Q3, PHYSICS, APPLIED Q3, PHYSICS, CONDENSED MATTER Q3)

(1998)

Chen, J. J., & Lin, J. D.* Simultaneous heat and mass transfer in polymer solutions exposed to intermittent infrared radiation heating. Numerical Heat Transfer, Part A Applications, 33(8), 851-873. (SCI Impact Factor=2.96, Cited number=3/7 (7), THERMODYNAMICS Q1, MECHANICS Q2)​

bottom of page