top of page

往復式熱循環反應器

(OScillatory TheRmal cYcler CHamber,OSTRYCH)

樣本置放於一個固定的反應槽,而在系統建立三個固定的溫度區,樣本的升降溫則藉由機構方面的往復式移動,使反應物在一個直線通道上,接觸不同的三個溫度區,達到聚合酶連鎖反應(Polymerase Chain Reaction,PCR)的三個反應溫度和反應時間。

利用商用軟體CFD-ACE+TM模擬在不同材料、邊界條件及反應槽移動速度時反應槽內溫度之變化。模擬過程中,反應槽以特定速度移動,當反應槽在溫度區時,邊界條件為定溫,當反應槽在冷卻區時,以自然對流為邊界條件,而反應槽同時在溫度區和冷卻區間時,邊界條件則依位置而定,所以邊界條件為隨時間變化,此邊界條件和反應槽的移動速度有關。由於反應槽移動時,邊界在對流或等溫條件下變換,因此運用FORTRAN程式編寫了副程式ubound代入CFD-ACE+TM軟體,可使結果更接近實際狀況。

 

結果顯示,考慮反應槽均溫性和加工成本的因素,以鋁作為反應槽的材料較銅或其他非金屬材料更為適當。反應槽移動速度在0.0001 m/s和1 m/s的範圍內,反應槽的溫度標準差都在1.4×10-3 K之內,可知反應槽移動速率對反應槽內部溫度分佈的影響非常小。

另外,實驗量測反應槽的中心溫度,以驗證系統之準確性、重覆性與穩定性。且本實驗顯示,當往行程速度設為0.0042 m/s,復行程速度設為0.00072 m/s時,溫度曲線結果呈現停留在裂解區、煉合區、延展區有時間比1:1:2之特性,各區間的溫度變化在2 K之內。最後發現,反應槽中心溫度的模擬與實驗曲線呈相似趨勢。

A novel OScillatory TheRmal cYcler CHamber (OSTRYCH) has been designed and fabricated in our work. The sample is placed in a fixed chamber, and three constant isothermal zones are established and lined up in the system.

 

The sample is oscillated and comes into contact with three different isothermal zones to complete thermal cycles. The commercial software CFD-ACE+TM is utilized to investigate the influences of various chamber materials, boundary conditions, and moving speeds on temperature distribution inside the chamber. The chamber moves at a specific speed, and the boundary conditions with time variations are related to the moving speed. When the chamber moves, the boundary is specified at the convection or uniform temperature conditions.

The user subroutines coded and compiled by the FORTRAN language are introduced into the software to make the numerical results realistic. Results show that regarding the temperature profiles and the standard deviation of the temperature at the Y-cut cross-section, the effects of various moving speeds of the chamber on the temperature distributions are negligible at the assigned time duration.

 

The central temperatures of the chamber with different moving speeds are measured. The repeatability and stability of the OSTRYCH are examined. Finally, the experimental results and numerical simulations are compared and show a similar trend.

Snap1.jpg
right-arrow.png
Snap2.jpg
right-arrow.png
Snap3.jpg

熱傳機制

Heat transfer

mechanisms

裝置示意

Schematic diagram

材料選擇模擬

Simulated results with

different materials

right-arrow.png
Snap6.jpg
right-arrow.png
Snap5.jpg
right-arrow.png
Snap4.jpg

熱傳特徵驗證

Validations of heat

transfer characteristics

反應槽溫度分布

Temperature distributions

of the

reaction chamber

熱循環溫度曲線

Temperature profiles

during thermal cycles

Chen, J. J., & Yang, Y. T. (2011). Modeling and experiment of shuttling speed effects on the OSTRYCH. Applied Thermal Engineering, 31(14-15), 2797-2807.

https://www.sciencedirect.com/science/article/pii/S1359431111002572?casa_token=yuCUD7hMSvAAAAAA:ZG_jlR4PJJSYcE5x_Nbxu3_s_iZF4wJpIbNyS0mP3gy6KuYEBuG8aIB2KOsDhBbfevI99NQaDON1​

bottom of page