top of page

紅外線往復式熱循環儀

(Oscillating thermocycler)

可進行聚合酶連鎖反應(polymerase chain reaction,PCR),而完成脱氧核醣核酸(deoxyribonucleic acid,DNA)的複製。

利用單一支紅外線加熱燈管,在往復通道上的兩個位置分別產生PCR所需的裂解區和延伸區,並使用風扇冷卻形成黏合區位置。樣本的升降溫則藉由伺服馬達往復地移動反應槽體,使反應物在一個直線通道上,接觸不同的溫度區,達到PCR所需的反應溫度和反應時間。

結果顯示,選用紅外線燈管的加熱功率為100 W和風扇電壓為8 VDC時,反應槽的最大升溫和降溫速率為1.73 K/s和1.26 K/s。

實驗結果顯示,各溫區間的溫度誤差(標準差)皆在溫度量測系統不準度的範圍之內(小於±1.17 K)。將本裝置實際進行貝氏考克斯菌(Coxiella burnetii)的385個鹼基對的DNA片段複製,可在五十分鐘內完成複製。

A polymerase chain reaction (PCR) with infrared (IR) heating is described. Comprehensive experiments of measuring temperature profiles during thermal cycling with various operational and geometrical parameters are presented. To our knowledge, our group is the first group to introduce an IR lamp, which costs less than USD 20, into the heating module that has been applied to the design of a continuous-flow PCR device.


By implementing one noncontact heating module and one high airflow fan into the device, the DNA mixture is heated directly and cooled down rapidly to the reaction temperature. Results show that the maximum average ramping rates for heating and cooling are 1.73 K/s and 1.26 K/s, respectively. Changing the moving speeds of the sample chamber during PCR achieves the required reaction time at three reaction regions.

 

The repeatability and stability of this system are confirmed.Next, a 385-bp segment of Coxiella burnetii DNA is amplified to evaluate the performance of the DNA amplification. Finally, the oscillatory thermocycler reduces the PCR time from 2 hours down to 50 min. The unique architecture utilized in this device is well applied to a low-cost PCR system.

Snap01.jpg
right-arrow.png
Snap02.jpg
right-arrow.png
Snap03.jpg

​熱傳機制

Heat transfer

mechanism

裝置示意

Photograph of

the device

​設計參數最佳化

Parametric

optimization

right-arrow.png
Snap06.jpg
right-arrow.png
Snap05.jpg
right-arrow.png
Snap04.jpg

貝氏考克斯菌

(Coxiella burnetii)

膠電泳結果

Gel electrophoresis

results of Coxiella

burnetii

熱循環溫度曲線

Thermocycling

temperature profiles

反應槽溫度曲線

Reaction chamber

temperature variations

Chen, J. J., & Hsieh, I. H. (2016). Using an IR lamp to perform DNA amplifications on an oscillatory thermocycler. Applied Thermal Engineering, 106, 1-12.

https://www.sciencedirect.com/science/article/pii/S1359431116308638?casa_token=7TVqFUMvoL4AAAAA:ekkZGIFeaD3hIpbQVTpMXFodMUNUSA1sfguobh_xkd_8hCz_HSNjUybn0KMcRZmMGn5RY8p-ONM

bottom of page